
12.1 SIMPLE HARMONIC MOTION

When a body repeats its motion after regular time
intervals we say that it is in harmonic motion or
periodic motion. The time interval after which the
motion is repeated is called the time period. If a body
moves to and fro on the same path, it is said to perform
oscillations. Simple harmonic motion (SHM) is a
special type of oscillation in which the particle
oscillates on a straight line, the acceleration of the
particle is always directed towards a fixed point on the
line and its magnitude is proportional to the
displacement of the particle from this point. This fixed
point is called the centre of oscillation. Taking this
point as the origin and the line of motion as the X-axis,
we can write the defining equation of a simple
harmonic motion as

a = − ω2x … (12.1)

where ω2 is a positive constant. If x is positive, a is
negative and if x is negative, a is positive. This means
that the acceleration is always directed towards the
centre of oscillation.

If we are looking at the motion from an inertial
frame,

  a = F/m.

The defining equation (12.1) may thus be written
as

F/m = − ω2x
 or, F = − mω2x

   or, F = − kx. … (12.2)

We can use equation (12.2) as the definition of
SHM. A particle moving on a straight line executes
simple harmonic motion if the resultant force acting
on it is directed towards a fixed point on the line and
is proportional to the displacement of the particle from
this fixed point. The constant k = mω2 is called the
force constant or spring constant. The resultant force
on the particle is zero when it is at the centre of
oscillation. The centre of oscillation is, therefore, the

equilibrium position. A force which takes the particle
back towards the equilibrium position is called a
restoring force. Equation (12.2) represents a restoring
force which is linear. Figure (12.1) shows the linear
restoring force graphically.

Example 12.1

 The resultant force acting on a particle executing simple
harmonic motion is 4 N when it is 5 cm away from the
centre of oscillation. Find the spring constant.

Solution : The simple harmonic motion is defined as 
F = – k x.

The spring constant is k = 

 
F
x




    = 
4 N
5 cm

 = 
4 N

5 × 10 − 2 m
= 80 N m−1.

12.2 QUALITATIVE NATURE OF
    SIMPLE HARMONIC MOTION

Let us consider a small block of mass m placed on
a smooth horizontal surface and attached to a fixed
wall through a spring as shown in figure (12.2). Let
the spring constant of the spring be k.
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The block is at a position O when the spring is at
its natural length. Suppose the block is taken to a
point P stretching the spring by the distance OP = A
and is released from there.

At any point on its path the displacement x of the
particle is equal to the extension of the spring from its
natural length. The resultant force on the particle is
given by F = – kx and hence by definition the motion
of the block is simple harmonic.

When the block is released from P, the force acts
towards the centre O. The block is accelerated in that
direction. The force continues to act towards O until
the block reaches O. The speed thus increases all the
time from P to O. When the block reaches O, its speed
is maximum and it is going towards left. As it moves
towards left from O, the spring becomes compressed.
The spring pushes the block towards right and hence
its speed decreases. The block moves to a point Q when
its speed becomes zero. The potential energy of the
system (block + spring), when the block is at P, is
1
2
 k (OP) 2  and  when  the  block  is  at Q it is

1
2
 k (OQ) 2. Since the block is at rest at P as well as at

Q, the kinetic energy is zero at both these positions.
As we have assumed frictionless surface, principle of
conservation of energy gives

         
1
2

 k (OP) 2 = 
1
2

 k (OQ) 2

or,            OP = OQ.

The spring is now compressed and hence it pushes
the block towards right. The block starts moving
towards right, its speed increases upto O and then
decreases to zero when it reaches P. Thus the particle
oscillates between P and Q. As OP = OQ, it moves
through equal distances on both sides of the centre of
oscillation. The maximum displacement on either side
from the centre of oscillation is called the amplitude.

Example 12.2

   A particle of mass 0.50 kg executes a simple harmonic
motion under a force F = – (50 N m−1)x. If it crosses the
centre of oscillation with a speed of 10 m s–1, find the
amplitude of the motion.

Solution : The kinetic energy of the particle when it is at

the centre of oscillation is E = 
1
2

 m v 2 

 = 
1
2

 (0.50 kg) (10 m s−1) 2 

 = 25 J.

The potential energy is zero here. At the maximum
displacement x = A, the speed is zero and hence the

kinetic energy is zero. The potential energy here is
1
2
 k A 2. As there is no loss of energy,

              
1
2

 k A 2 = 25 J. … (i)

The force on the particle is given by
          F = – (50 N m−1)x.

Thus, the spring constant is k = 50 N m–1.

Equation (i) gives

            
1
2

 (50 N m−1) A 2 = 25 J

or, A = 1 m.

12.3 EQUATION OF MOTION OF
    A SIMPLE HARMONIC MOTION

Consider a particle of mass m moving along the
X-axis. Suppose, a force F = – kx acts on the particle
where k is a positive constant and x is the
displacement of the particle from the assumed origin.
The particle then executes a simple harmonic motion
with the centre of oscillation at the origin. We shall
calculate the displacement x and the velocity v as a
function of time.

Suppose the position of the particle at t = 0 is x0

and its velocity is v0. Thus,

at t = 0, x = x0  and  v = v0.

The acceleration of the particle at any instant is 

        a = 
F
m

 = − 
k
m

 x = − ω 2x

  where   ω = √km−1 .

   Thus,    
dv
dt

 = − ω 2x … (12.3)

or,    
dv
dx

 
dx
dt

 = − ω 2x

or,     v 
dv
dx

 = − ω 2x

or,     vdv = − ω 2 x dx.
The velocity of the particle is v0 when the particle

is at x = x0. It becomes v when the displacement
becomes x. We can integrate the above equation and
write

         ∫ 
v0

v

v dv = ∫ 
x0

x

− ω 2 x dx
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or,        



v 2

2


 v0

 v

 = − ω 2 


x 2

2


 x0

 x

or,        v 2 − v0
 2 = − ω 2(x 2 − x0

 2)

or,           v 2 = (v0
 2 + ω 2x0

 2 − ω 2x 2)

or,           v = √(v0
 2 + ω 2x0

 2) − ω 2x 2

or,           v = ω√



v0
 2

ω 2 + x0
 2


 − x 2 . 

   Writing       




v0

ω




 2

 + x0
 2 = A 2 … (12.4)

the above equation becomes

             v = ω √A 2 − x 2 .        … (12.5)

We can write this equation as

             
dx
dt

 = ω √A 2 − x 2  

   or,    
dx

√A 2 − x 2
 = ω dt.

At time t = 0 the displacement is x = x0 and at time
t the displacement becomes x. The above equation can
be integrated as

       ∫ 
x0

x

  
dx

√A 2 − x 2
 = ∫ 

0

t

 ω dt

   or,        sin − 1 
x
A

 x0

 x
 = [ωt]

 0

 t  

   or, sin − 1 
x
A

 − sin − 1 
x0

A
 = ωt.

   Writing      sin − 1 
x0

A
 = δ, this becomes

sin − 1 
x
A

 = ωt + δ

   or,            x = A sin(ωt + δ). … (12.6)

The velocity at time t is

          v = 
dx
dt

 = A ω cos(ωt + δ). … (12.7)

12.4 TERMS ASSOCIATED WITH SIMPLE
    HARMONIC MOTION

(a) Amplitude

Equation (12.6) gives the displacement of a particle
in simple harmonic motion. As sin(ωt + δ) can take
values between – 1 and + 1, the displacement x can
take values between – A and + A. This gives the
physical significance of the constant A. It is the
maximum displacement of the particle from the centre
of oscillation, i.e, the amplitude of oscillation.

(b) Time Period

A particle in simple harmonic motion repeats its
motion after a regular time interval. Suppose the
particle is at a position x and its velocity is v at a
certain time t. After some time the position of the
particle will again be x and its velocity will again be
v in the same direction. This part of the motion is
called one complete oscillation and the time taken in
one complete oscillation is called the time period T.
Thus, in figure (12.4) Q to P and then back to Q is a
complete oscillation, R to P to Q to R is a complete
oscillation, O to P to Q to O is a complete oscillation,
etc. Both the position and the velocity (magnitude as
well as direction) repeat after each complete
oscillation.

We have,
            x = A sin(ωt + δ).

If T be the time period, x should have same value
at t and t + T.

Thus,    sin(ωt + δ) = sin[ω(t + T) + δ].
   Now the velocity is (equation 12.7)

v = A ω cos(ωt + δ).

As the velocity also repeats its value after a time
period, cos(ωt + δ) = cos[ω(t + T) + δ].

Both sin(ωt + δ) and cos(ωt + δ) will repeat their
values if the angle (ωt + δ) increases by 2π or its
multiple. As T is the smallest time for repetition,
         ω(t + T) + δ = (ωt + δ) + 2π
   or, ω T = 2π

   or, T = 
2π
ω

 ⋅

   Remembering that ω = √km−1 , we can write for the
time period,

            T = 
2π
ω

 = 2π √m
k

       … (12.8)

where k is the force constant and m is the mass of the
particle.

Example 12.3

   A particle of mass 200 g executes a simple harmonic
motion. The restoring force is provided by a spring of
spring constant 80 N m–1. Find the time period.

Solution : The time period is

           T = 2π √m
k
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         2 200  10  3 kg
80 N m1

         2  0.05 s  0.31 s.

(c) Frequency and Angular Frequency

The reciprocal of time period is called the
frequency. Physically, the frequency represents the
number of oscillations per unit time. It is measured in
cycles per second also known as hertz and written in
symbols as Hz. Equation (12.8) shows that the
frequency is

             
1
T

  

2

  (12.9)

                
1
2

 k
m

    (12.10)

The constant  is called the angular frequency.

(d) Phase

The quantity   t   is called the phase. It
determines the status of the particle in simple
harmonic motion. If the phase is zero at a certain
instant, x  A sint    0 and v  A  cost  
 A . This means that the particle is crossing the
mean position and is going towards the positive
direction. If the phase is /2, we get x  A,  v  0 so
that the particle is at the positive extreme position.
Figure (12.5) shows the status of the particle at
different phases.

We see that as time increases the phase increases.
An increase of 2 brings the particle to the same status
in the motion. Thus, a phase t   is equivalent to a
phase t    2. Similarly, a phase change of 4,
6, 8, , etc., are equivalent to no phase change.

Figure (12.6) shows graphically the variation of
position and velocity as a function of the phase.

(e) Phase constant

The constant  appearing in equation (12.6) is
called the phase constant. This constant depends on
the choice of the instant t  0. To describe the motion
quantitatively, a particular instant should be called
t  0  and measurement of time should be made from
this instant. This instant may be chosen according to
the convenience of the problem. Suppose we choose
t  0  at an instant when the particle is passing
through its mean position and is going towards the
positive direction. The phase t   should then be
zero. As t  0 this means  will be zero. The equation
for displacement can then be written as
              x  A sint.

If we choose t  0 at an instant when the particle
is at its positive extreme position, the phase is /2 at
this instant. Thus t    /2 and hence   /2. The
equation for the displacement is x  A sint  /2
   or,           x  A cost.

Any instant can be chosen as t  0 and hence the
phase constant can be chosen arbitrarily. Quite often
we shall choose   0 and write the equation for
displacement as x  A sint. Sometimes we may have
to consider two or more simple harmonic motions
together. The phase constant of any one can be chosen
as   0. The phase constants of the rest will be
determined by the actual situation. The general
equation for displacement may be written as
          x  A sint  

              A sin



t  


2

  


              A cost  
where  is another arbitrary constant. The sine form
and the cosine form are, therefore, equivalent. The
value of phase constant, however, depends on the form
chosen.

Example 12.4

   A particle executes simple harmonic motion of amplitude
A along the X-axis. At t  0, the position of the particle
is x  A/2 and it moves along the positive x-direction.
Find the phase constant  if the equation is written as
x  A sint  .

Solution : We have x  A sint  . At t  0,  x  A/2.
Thus,        A/2  A sin
or,        sin  1/2
or,   /6   or   5/6.

The velocity is v  dx
dt

  A  cost  .

At          t  0,  v  A  cos.

Now,       cos 

6

  
3
2

  and  cos 
5
6

   
3
2

 

As v is positive at t  0,   must be equal to /6.
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12.5 SIMPLE HARMONIC MOTION AS A
    PROJECTION OF CIRCULAR MOTION

Consider a particle P moving on a circle of radius
A with a constant angular speed ω (figure 12.7). Let
us take the centre of the circle as the origin and two
perpendicular diameters as the X and Y-axes. Suppose
the particle P is on the X-axis at t = 0. The radius OP
will make an angle θ = ωt with the X-axis at time t.
Drop perpendicular PQ on X-axis and PR on Y-axis.
The x and y-coordinates of the particle at time t are

          x = OQ = OP cos ωt

   or,        x = A cos ωt … (12.11)

and        y = OR = OP sin ωt

   or,         y = A sin ωt. … (12.12)

Equation (12.11) shows that the foot of
perpendicular Q executes a simple harmonic motion
on the X-axis. The amplitude is A and the angular
frequency is ω. Similarly, equation (12.12) shows that
the foot of perpendicular R executes a simple harmonic
motion on the Y-axis. The amplitude is A and the
angular frequency is ω. The phases of the two simple
harmonic motions differ by π/2 [remember
cosωt = sin(ωt+ π/2)].

Thus, the projection of a uniform circular motion
on a diameter of the circle is a simple harmonic
motion.

12.6 ENERGY CONSERVATION IN SIMPLE
     HARMONIC MOTION

Simple harmonic motion is defined by the equation
              F = − kx.

The work done by the force F during a
displacement from x to x + dx is
             dW = F dx
                = − kx dx.

The work done in a displacement from x = 0 to x is

         W = ∫ 
0

x

 (− kx)dx = − 
1
2

kx 2.

Let U(x) be the potential energy of the system
when the displacement is x. As the change in potential

energy corresponding to a force is negative of the work
done by this force,

        U(x) − U(0) = − W = 
1
2

 kx 2.

Let us choose the potential energy to be zero when
the particle is at the centre of oscillation x = 0.

Then    U(0) = 0  and  U(x) = 
1
2

kx 2.

This expression for potential energy is same as
that for a spring and has been used so far in this
chapter.

   As      ω = √⎯⎯k
m

 ,  k =  m ω 2

   we can write U(x) = 
1
2

 m ω 2 x 2. … (12.13)

The displacement and the velocity of a particle
executing a simple harmonic motion are given by

        x = A sin(ωt + δ)
and v = A ω cos(ωt + δ).

The potential energy at time t is, therefore,

           U = 
1
2

 m ω 2 x 2

= 
1
2

 m ω 2 A 2 sin 2(ωt + δ),

and the kinetic energy at time t is

K = 
1
2

 m v 2

= 
1
2

 m A 2 ω 2 cos 2(ωt + δ).

The total mechanical energy at time t is
    E = U + K

          = 
1
2

 m ω 2 A 2 [sin 2(ωt + δ) + (cos 2(ωt + δ)]

    = 
1
2

 m ω 2 A 2. … (12.14)

We see that the total mechanical energy at time t
is independent of t. Thus, the mechanical energy
remains constant as expected.

As an example, consider a small block of mass m
placed on a smooth horizontal surface and attached to
a fixed wall through a spring of spring constant k
(figure 12.8).
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When displaced from the mean position (where the
spring has its natural length), the block executes a
simple harmonic motion. The spring is the agency
exerting a force F = − kx on the block. The potential
energy of the system is the elastic potential energy
stored in the spring.

At the mean position x = 0, the potential energy is

zero. The kinetic energy is 1
2
 m v0

 2 = 1
2
 m ω 2 A 2. All the

mechanical energy is in the form of kinetic energy
here. As the particle is displaced away from the mean
position, the kinetic energy decreases and the potential
energy increases. At the extreme positions x = ± A, the
speed v is zero and the kinetic energy decreases to
zero. The potential energy is increased to its maximum
value 1

2
 kA 2 = 1

2
 m ω 2 A 2. All the mechanical energy is

in the form of potential energy here.

Example 12.5

   A particle of mass 40 g executes a simple harmonic
motion of amplitude 2.0 cm. If the time period is 0.20 s,
find the total mechanical energy of the system.

Solution : The total mechanical energy of the system is

       E = 
1
2

 m ω 2 A 2 

 = 
1
2

 m




2π
T




 2

 A 2 = 
2π 2 m A 2

T 2  

= 
2 π 2(40 × 10 − 3 kg) (2.0 × 10 − 2 m) 2

(0.20 s) 2 

 = 7.9 × 10 − 3 J.

12.7 ANGULAR SIMPLE HARMONIC MOTION

A body free to rotate about a given axis can make
angular oscillations. For example, a hanging umbrella
makes angular oscillations when it is slightly pushed
aside and released. The angular oscillations are called
angular simple harmonic motion if

(a) there is a position of the body where the
resultant torque on the body is zero, this position is
the mean position θ = 0,

(b) when the body is displaced through an angle
from the mean position, a resultant torque acts which
is proportional to the angle displaced, and

(c) this torque has a sense (clockwise or
anticlockwise) so as to bring the body towards the
mean position.

If the angular displacement of the body at an
instant is θ, the resultant torque acting on the body
in angular simple harmonic motion should be

            Γ = − k θ.

If the moment of inertia is I, the angular
acceleration is

              α = 
Γ
I

 = − 
k
I
 θ

   or, 
d 2θ
dt 2

 = − ω 2 θ …  (12.15)

   where ω = √kI−1 .

Equation (12.15) is identical to equation (12.3)
except for the symbols. The linear displacement x in
(12.3) is replaced here by the angular displacement
θ. Thus, equation (12.15) may be integrated in the
similar manner and we shall get an equation similar
to (12.6), i.e.,
          θ = θ0 sin(ωt + δ) … (12.16)

where θ0 is the maximum angular displacement on
either side. The angular velocity at time t is given by,

           Ω = 
dθ
dt

 = θ0 ω cos(ωt + δ). … (12.17)

   The time period of oscillation is

          T = 
2 π
ω

 =  2 π √ I
k

 … (12.18)

   and the frequency of oscillation is

          ν = 
1
T

 = 
1

2 π
 √ k

I
⋅ … (12.19)

   The quantity ω = √kI −1  is the angular frequency.

Example 12.6

   A body makes angular simple harmonic motion of
amplitude π/10 rad and time period 0.05 s. If the body
is at a displacement θ = π/10 rad at t = 0, write the
equation giving the angular displacement as a function
of time.

Solution : Let the required equation be
      θ = θ 0 sin(ωt + δ).

Here   θ0 =  amplitude  = 
π

10
 rad

       ω = 
2 π
T

 = 
2 π

0.05 s
 = 40 π s − 1 

so that  θ = 




π
10

 rad



 sin 


40 π s − 1

 t + δ .        … (i)

At t = 0,  θ = π/10 rad. Putting in (i),

      
π

10
 = 




π
10




 sinδ

or,      sinδ = 1
or,         δ = π/2.
Thus by (i),

          θ = 




π
10

 rad



 sin




(40 π s − 1)t + 

π
2




      = 




π
10

 rad



 cos[(40 π s − 1) t ].
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Energy

The potential energy is

       U = 
1
2

 k θ 2 = 
1
2

 I ω 2 θ 2

   and the kinetic energy is

K = 
1
2

 I Ω 2.

   The total energy is
E = U + K

          = 
1
2

 I ω2 θ 2 + 
1
2

 I Ω 2.

Using θ = θ0 sin(ωt + δ)

 E = 
1
2

 I ω 2 θ0
 2 sin 2(ωt + δ)

                + 
1
2

 I θ 0
2 ω 2 cos 2(ωt + δ)

 = 
1
2

 I ω 2θ0 
2.  … (12.20)

12.8 SIMPLE PENDULUM

A simple pendulum consists of a heavy particle
suspended from a fixed support through a light
inextensible string. Simple pendulum is an idealised
model. In practice, one takes a small metallic sphere
and suspends it through a string. 

Figure (12.9) shows a simple pendulum in which
a particle of mass m is suspended from the fixed
support O through a light string of length l. The
system can stay in equilibrium if the string is vertical.
This is the mean or equilibrium position. If the particle
is pulled aside and released, it oscillates in a circular
arc with the centre at the point of suspension O.

The position of the particle at any time can be
described by the angle θ between the string and the
vertical. The mean position or the equilibrium position
corresponds to θ = 0. The particle makes pure rotation
about the horizontal line OA (figure 12.9) which is
perpendicular to the plane of motion.

Let us see whether the motion of the particle is
simple harmonic or not and find out its time period of
oscillation.

Let the particle be at P at a time t when the string
OP makes an angle θ with the vertical (figure 12.10).

Let OQ be the horizontal line in the plane of motion.
Let PQ be the perpendicular to OQ.

Forces acting on the particle are (a) the weight mg
and (b) the tension T.

The torque of T about OA is zero as it intersects
OA. The magnitude of the torque of mg about OA is

         Γ  = (mg) (OQ)
 = mg (OP) sinθ

= mgl sinθ.

Also, the torque tries to bring the particle back
towards θ = 0. Thus, we can write

Γ = − mgl sinθ.  … (12.21)

We see that the resultant torque is not
proportional to the angular displacement and hence
the motion is not angular simple harmonic. However,
if the angular displacement is small, sinθ is
approximately equal to θ (expressed in radians) and
equation (12.21) may be written as

Γ = − mgl θ.  … (12.22)

Thus, if the amplitude of oscillation is small, the
motion of the particle is approximately angular simple
harmonic. The moment of inertia of the particle about
the axis of rotation OA is

          I = m(OP) 2 = ml 2.

The angular acceleration is

α = 
Γ
I

 = − 
mgl θ
ml 2

 = − 
g
l
 θ 

   or, α = − ω 2 θ

where      ω = √gl −1 .

This is the equation of an angular simple harmonic
motion. The constant ω = √gl −1  represents the angular
frequency. The time period is

           T = 
2π
ω

 = 2π √l/g . … (12.23)

Example 12.7 

   Calculate the time period of a simple pendulum of length
one meter. The acceleration due to gravity at the place is
π 2 m s −2.
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Solution : The time period is
            T = 2π √lg−1

           = 2π √1.00 m
π 2 m s −2  = 2.0 s.

Simple Pendulum as a Linear
Simple Harmonic Oscillator

If the amplitude of oscillation is small, the path of
the particle is approximately a straight line and the
motion can be described as a linear simple harmonic
motion. We rederive expression (12.23) for the time
period using this approach.

Consider the situation shown in figure (12.11).

Suppose the string makes an angle θ with the
vertical at time t. The distance of the particle from the
equilibrium position along the arc is x = lθ. The speed
of the particle at time t is

                v = 
dx
dt

   and the tangential acceleration is

at = 
dv
dt

 = 
d 2x
dt 2

 ⋅ … (i)

Forces acting on the particle are (a) the weight mg
and (b) the tension T. The component of mg along the
tangent to the path is −mgsinθ and that of T is zero.
Thus, the total tangential force on the particle is
−mgsinθ. Using (i) we get

           −mgsinθ = m 
d 2x
dt 2

 

   or,           
d 2x
dt 2

 = −g sin θ. … (ii)

If the amplitude of oscillation is small,
sinθ ≈ θ = xl −1. Equation (ii) above thus becomes (for
small oscillations)

           
d 2x
dt 2

 = − 
g
l
 x

   or, 
d 2x
dt 2

 = − ω 2x

where             ω = √gl−1 .

This equation represents a simple harmonic
motion of the particle along the arc of the circle in
which it moves. The angular frequency is ω = √gl−1  and
the time period is

           T = 
2π
ω

 = 2π √lg−1  

which is same as in equation (12.23).

Determination of g in Laboratory

A simple pendulum provides an easy method to
measure the value of ‘g’ in a laboratory. A small
spherical ball with a hook is suspended from a clamp
through a light thread as shown in figure (12.12).

The lengths AC and BD are measured with slide
callipers. The length OA of the thread is measured
with a meter scale. The effective length is

     OP = OA + AP = OA + AC − 
BD
2

 ⋅

The bob is slightly pulled aside and gently released
from rest. The pendulum starts making oscillations.
The time for a number of oscillations (say 20 or 50) is
measured with a stop watch and the time period is
obtained. The value of g is calculated by equation
(12.23). The length of the thread is varied and the
experiment is repeated a number of times to minimise
the effect of random errors.

Example 12.8

   In a laboratory experiment with simple pendulum it was
found that it took 36 s to complete 20 oscillations when
the effective length was kept at 80 cm. Calculate the
acceleration due to gravity from these data.

Solution : The time period of a simple pendulum is given
by
            T = 2π √lg−1

   or, g = 
4π 2 l
T 2  ⋅ … (i)

In the experiment described in the question, the time
period is

T = 
36 s
20

 = 1.8 s.
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Thus, by (i),

     g  
4 2  0.80 m

1.8 s 2   9.75 m s2.

12.9 PHYSICAL PENDULUM

Any rigid body suspended from a fixed support
constitutes a physical pendulum. A circular ring
suspended on a nail in a wall, a heavy metallic rod
suspended through a hole in it, etc., are examples of
physical pendulum. Figure (12.13) shows a physical
pendulum. A rigid body is suspended through a hole
at O. When the centre of mass C is vertically below
O, the body may remain at rest. We call this position
  0. When the body is pulled aside and released, it
executes oscillations.

The body rotates about a horizontal axis through
O and perpendicular to the plane of motion. Let this
axis be OA. Suppose the angular displacement of the
body is  at time t. The line OC makes an angle  with
the vertical at this instant.

Forces on the body are (a) the weight mg and (b)
the contact force N  by the support at O.

The torque of N  about OA is zero as the force
N  acts through the point O. The torque of mg has
magnitude

         mg OD
 mg OC sin  mgl sin

where l  OC is the separation between the point of
suspension and the centre of mass. This torque tries
to bring the body back towards   0. Thus, we can
write
              mglsin.

If the moment of inertia of the body about OA is
I, the angular acceleration becomes

             

I

   
mgl

I
 sin.   (i)

We see that the angular acceleration is not
proportional to the angular displacement and the
motion is not strictly simple harmonic. However, for
small displacements sin   so that equation (i)

becomes
               2 

where  2  mglI 1.
Thus, for small oscillations, the motion is nearly

simple harmonic. The time period is

           T  
2


  2 I
mgl

   (12.24)

Example 12.9

   A uniform rod of length 1.00 m is suspended through an
end and is set into oscillation with small amplitude
under gravity. Find the time period of oscillation.

Solution : For small amplitude the angular motion is
nearly simple harmonic and the time period is given by

      T  2I
mgl

  2 mL 2/3
mgL/2

        22L
3g

  2 2  1.00 m
3  9.80 m s2   1.64 s.

12.10 TORSIONAL PENDULUM

In torsional pendulum, an extended body is
suspended by a light thread or a wire. The body is
rotated through an angle about the wire as the axis of
rotation (figure 12.14).

The wire remains vertical during this motion but
a twist is produced in the wire. The lower end of the
wire is rotated through an angle with the body but the
upper end remains fixed with the support. Thus, a
twist  is produced. The twisted wire exerts a restoring
torque on the body to bring it back to its original
position in which the twist  in the wire is zero. This
torque has a magnitude proportional to the angle of
twist which is equal to the angle rotated by the body.
The proportionality constant is called the torsional
constant of the wire. Thus, if the torsional constant of
the wire is k and the body is rotated through an angle
, the torque produced is    k.

If I be the moment of inertia of the body about the
vertical axis, the angular acceleration is

            

I

   
k
I
 

Figure 12.13

Figure 12.14
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              2 

 where    k
I


Thus, the motion of the body is simple harmonic
and the time period is

           T  
2


  2  I
k

   (12.25)

Example 12.10           

   A uniform disc of radius 5.0 cm and mass 200 g is fixed
at its centre to a metal wire, the other end of which is
fixed with a clamp. The hanging disc is rotated about
the wire through an angle and is released. If the disc
makes torsional oscillations with time period 0.20 s, find
the torsional constant of the wire.

Solution : The situation is shown in figure (12.15). The
moment of inertia of the disc about the wire is 

      I  
mr 2

2
  

0.200 kg 5.0  10 2 m 2

2

         2.5  10  4 kg  m 2.

The time period is given by

          T  2  I
k

or,         k  
4 2 I
T 2  

           
4  22.5  10  4 kg  m 2

0.20 s 2  

            0.25 
kg  m 2

s 2  

12.11 COMPOSITION OF TWO SIMPLE HARMONIC 
     MOTIONS

A simple harmonic motion is produced when a
restoring force proportional to the displacement acts
on a particle. If the particle is acted upon by two
separate forces each of which can produce a simple
harmonic motion, the resultant motion of the particle
is a combination of two simple harmonic motions.

Let r1


 denote the position of the particle at time t

if the force F1


 alone acts on it. Similarly, let r2


 denote

the position at time t if the force F2


 alone acts on it.

Newton’s second law gives,

            m 
d 2 r1



d t 2
  F1



and        m 
d 2 r2



d t 2
  F2


.

Adding them,

      m 
d 2 r1



dt 2
  m 

d 2 r2



dt 2
  F1


  F2



   or,    m 
d 2

dt 2
  r1


  r2


   F1


  F2


.  (i)

But F1


  F2


 is the resultant force acting on the

particle and so the position r

 of the particle when both

the forces act, is given by

        m 
d 2 r



dt 2
  F1


  F2


.  (ii)

Comparing (i) and (ii) we can show that
           r


  r1


  r2



and u


  u


1  u


2

if these conditions are met at t  0.

Thus, if two forces F1


  and  F2


 act together on a

particle, its position at any instant can be obtained as
follows. Assume that only the force F1


 acts and find

the position r1


 at that instant. Then assume that only

the force F2


 acts and find the position r2


 at that same

instant. The actual position will be the vector sum of
r1


 and r2


.

(A) Composition of two Simple Harmonic Motions
   in Same Direction

Suppose two forces act on a particle, the first alone
would produce a simple harmonic motion given by

         x1  A1 sin t

and the second alone would produce a simple harmonic
motion given by
            x2  A2 sint  .
Both the motions are along the x-direction. The
amplitudes may be different and their phases differ by
. Their frequency is assumed to be same. The
resultant position of the particle is then given by

 x  x1  x2

    A1 sin t  A2 sint  
    A1 sin t  A2 sin t cos   A2 cos t sin 
    A1  A2 cos  sin t  A2 sin  cos t

Figure 12.15
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 C sint  D cost

  C2  D2  


C

C 2  D 2
 sint 

                   
D

C 2  D 2
 cost


  (i)

where C  A1  A2 cos  and  D  A2 sin.

Now C

C 
2
  D 

2
 and D

C 
2
  D 

2
 both have magnitudes

less than 1 and the sum of their squares is 1. Thus,
we can find an angle  between 0 and 2 such that

   sin  
D

C 2  D 2
  and  cos  C

C 2  D 2
 

Equation (i) then becomes

      x  C 2  D 2  cos sint  sin cost

   or,    x  A sint    (12.26)

where

   A  C 2  D 2

  A1  A2 cos 2  A2 sin 2

  A1
 2  2A1 A2 cos  A2

 2 cos 2   A2
 2 sin 2

         A1
 2  2 A1A2 cos  A2

 2  (12.27)

   and      tan  
D
C

  
A2 sin

A1  A2 cos
   (12.28)

Equation (12.26) shows that the resultant of two
simple harmonic motions along the same direction is
itself a simple harmonic motion. The amplitude and
phase of the resultant simple harmonic motion depend
on the amplitudes of the two component simple
harmonic motions as well as the phase difference
between them.

Amplitude of The Resultant Simple Harmonic Motion

The amplitude of the resultant simple harmonic
motion is given by equation (12.27),

      A  A1
 2  2 A1A2 cos  A2

 2 .

If   0, the two simple harmonic motions are in
phase

     A  A1
 2  2 A1A2  A2

 2   A1  A2 .

The amplitude of the resultant motion is equal to
the sum of amplitudes of the individual motions. This
is the maximum possible amplitude.

If    , the two simple harmonic motions are out
of phase and

  A  A1
 2  2 A1A2  A2

 2   A1  A2  or  A2  A1.

As the amplitude is always positive we can write
A   A1  A2 .  If  A1  A2 the resultant amplitude is
zero and the particle does not oscillate at all.

For any value of  other than 0 and  the resultant
amplitude is between  A1  A2   and  A1  A2.

Example 12.11

   Find the amplitude of the simple harmonic motion
obtained by combining the motions

         x1  2.0 cm sint

and     x2  2.0 cm sint  /3.

Solution : The two equations given represent simple
harmonic motions along X-axis with amplitudes
A1  2.0 cm and A2  2.0 cm. The phase difference
between the two simple harmonic motions is /3. The
resultant simple harmonic motion will have an
amplitude A given by

   A  A1
 2  A2

 2  2 A1A2 cos

 2.0 cm 2  2.0 cm 2  2 2.0 cm 2 cos

3

 3.5 cm.

Vector Method of Combining Two Simple Harmonic Motions

There is a very useful method to remember the
equations of resultant simple harmonic motion when
two simple harmonic motions of same frequency and
in same direction combine. Suppose the two individual
motions are represented by

          x1  A1 sint

and        x2  A2 sint  .
Let us for a moment represent the first simple

harmonic motion by a vector of magnitude A1 and the
second simple harmonic motion by another vector of
magnitude A2. We draw these vectors in figure (12.16).
The vector A2 is drawn at an angle  with A1 to
represent that the second simple harmonic motion has
a phase difference of  with the first simple harmonic
motion.

The resultant A


 of these two vectors will represent
the resultant simple harmonic motion. As we know
from vector algebra, the magnitude of the resultant
vector is

        A  A1
 2  2 A1A2 cos  A2

 2

A
A

A

2

1

Figure 12.16
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which is same as equation (12.27). The resultant A
→

makes an angle ε with A1

→
, where

            tanε = 
A2 sinδ

A1 + A2 cosδ
which is same as equation (12.28).

This method can easily be extended to more than
two vectors. Figure (12.17) shows the construction for
adding three simple harmonic motions in the same
direction.

         x1 = A1 sinωt

         x2 = A2 sin(ωt + δ1)
         x3 = A3 sin(ωt + δ2).
The resultant motion is given by x = A sin(ωt + ε).

(B) Composition of Two Simple Harmonic Motions
   in Perpendicular Directions

Suppose two forces act on a particle, the first alone
would produce a simple harmonic motion in x-direction
given by
            x = A1 sinωt … (i)

and the second would produce a simple harmonic
motion in y-direction given by
            y = A2 sin(ωt + δ). … (ii)

The amplitudes A1  and  A2 may be different and
their phases differ by δ. The frequencies of the two
simple harmonic motions are assumed to be equal. The
resultant motion of the particle is a combination of the
two simple harmonic motions. The position of the
particle at time t is (x, y) where x is given by equation
(i) and y is given by (ii). The motion is thus two-
dimensional and the path of the particle is in general
an ellipse. The equation of the path may be obtained
by eliminating t from (i) and (ii).

By (i),

             sinωt = 
x
A1

 ⋅

   Thus,        cosωt = √1 − 
x 2

A1 
2  ⋅

   Putting in (ii)
     y = A2 [sinωt cosδ + cosωt sinδ]

  = A2 








x
A1

 cosδ + √1 − 
x 2

A1
 2  sinδ








or,      


y
A2

 − 
x
A1

 cosδ


 2

 = 



1 − 

x 2

A1
 2




 sin 2δ

or,      
y 2

A2
 2 − 

2xy
A1 A2

 cosδ + 
x 2

A1
 2 cos 2δ

                = sin 2δ − 
x 2

A1 
2 sin 2δ

   or,        
x 2

A1
 2 + 

y 2

A2
 2 − 

2xy cosδ
A1 A2

 = sin 2δ. … (12.29)

This is an equation of an ellipse and hence the
particle moves in ellipse. Equation (i) shows that x
remains between − A1  and  + A1 and (ii) shows that y
remains between A2  and  − A2. Thus, the particle
always remains inside the rectangle defined by

        x = ± A1,  y = ± A2 .

The ellipse given by (12.29) is traced inside this
rectangle and touches it on all the four sides (figure
12.18).

Special Cases

(a) δδδδ ==== 0

The two simple harmonic motions are in phase.
When the x-coordinate of the particle crosses the value
0, the y-coordinate also crosses the value 0. When
x-coordinate reaches its maximum value A1, the
y-coordinate also reaches its maximum value A2 .
Similarly, when x-coordinate reaches its minimum
value − A1, the y-coordinate reaches its minimum value
− A2 .

If we substitute δ = 0 in equation (12.29) we get

         
x 2

A1
 2 + 

y 2

A2
 2 − 

2xy
A1 A2

 = 0

   or,        



x
A1

 − 
y
A2





 2

 = 0

   or,              y = 
A2

A1
 x … (iii)
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which is the equation of a straight line passing through

the origin and having a slope tan − 1 
A2

A1
 ⋅ Figure (12.19)

shows the path. Equation (iii) represents the diagonal
AC of the rectangle. The particle moves on this
diagonal.

Equation (iii) can be directly obtained by dividing
(i) by (ii) and putting δ = 0. The displacement of the
particle on this straight line at time t is

 r = √x 2 + y 2  = √(A1 sinωt) 2 + (A2 sinωt) 2

          = √(A1
 2 + A2

 2)  sinωt.

Thus, the resultant motion is a simple harmonic
motion with same frequency and phase as the
component motions. The amplitude of the resultant

simple harmonic motion is √A1
 2 + A2

 2  as is also clear
from figure (12.19).

(b) δδδδ ==== ππππ

The two simple harmonic motions are out of phase
in this case. When the x-coordinate of the particle
reaches its maximum value A1, the y-coordinate
reaches its minimum value − A2 . Similarly, when the
x-coordinate reaches its minimum value − A1 , the
y-coordinate takes its maximum value A2 .

Putting δ = π in equation (12.29) we get

    
x 2

A1
 2 + 

y 2

A2
 2 + 

2xy
A1 A2

 = 0

or, 



x
A1

 + 
y
A2





 2

 = 0

or, y = − 
A2

A1
 ⋅ x

which is the equation of the line BD in figure (12.20).

Thus the particle oscillates on the diagonal BD of
the rectangle as shown in figure (12.20).

The displacement on this line at time t may be
obtained from equation (i) and (ii) (with δ = π).

  r = √x 2 + y 2  = √[A1 sinωt] 2 + [A2 sin(ωt + π)] 2

 = √A1
 2 sin 2ωt + A2

 2 sin 2ωt  = √A1
 2 + A2

 2  sinωt.

Thus the resultant motion is a simple harmonic

motion with amplitude √A1
 2 + A2

 2 .

(c) δδδδ ==== ππππ/ 2

The two simple harmonic motions differ in phase
by π/2. Equations (i) and (ii) may be written as

         x = A1 sinωt

         y = A2 sin(ωt + π/2) = A2 cosωt.

The x-coordinate takes its maximum value x = A1

when sinωt = 1. Then cosωt = 0 and hence, the
y-coordinate is zero. The particle is at the point E in
figure (12.21). When x-coordinate reduces to 0,
sinωt = 0, and cosωt becomes 1. Then y-coordinate
takes its maximum value A2 so that the particle
reaches the point F. Then x reduces to − A1 and y
becomes 0. This corresponds to the point G of figure
(12.21). As x increases to 0 again, y takes its minimum
value − A2 , the particle is at the point H. The motion
of the particle is along an ellipse EFGHE inscribed in
the rectangle shown. The major and the minor axes of
the ellipse are along the X and Y-axes.

Putting δ = π/2 in equation (12.29) we get

          
x 2

A1
 2 + 

y 2

A2
 2 = 1

which is the standard equation of an ellipse with its
axes along X and Y-axes and with its centre at the
origin. The length of the major and minor axes are
2 A1  and  2 A2 .

If A1 = A2 = A together with δ = π/2, the rectangle
of figure (12.21) becomes a square and the ellipse
becomes a circle. Equation (12.29) becomes

           x 2 + y 2 = A 2

which represents a circle.
Thus, the combination of two simple harmonic

motions of equal amplitude in perpendicular directions
differing in phase by π/2 is a circular motion.

�

�
�

� �

� 

Figure 12.19

�

�
�

� �

� 

Figure 12.20

�

�

� �

� 

#

�

$

%

Figure 12.21

Simple Harmonic Motion 241



The circular motion may be clockwise or
anticlockwise, depending on which component leads
the other.

12.12 DAMPED HARMONIC MOTION

A particle will execute a simple harmonic motion
with a constant amplitude if the resultant force on it
is proportional to the displacement and is directed
opposite to it. Nature provides a large number of
situations in which such restoring force acts. The
spring-mass system and the simple pendulum are
examples. However, in many of the cases some kind
of damping force is also present with the restoring
force. The damping force may arise due to friction
between the moving parts, air resistance or several
other causes. The damping force is a function of speed
of the moving system and is directed opposite to the
velocity. Energy is lost due to the negative work done
by the damping force and the system comes to a halt
in due course.

The damping force may be a complicated function
of speed. In several cases of practical interest the
damping force is proportional to the speed. This force
may then be written as

           F   bv.
The equation of motion is

         m 
dv
dt

   kx  bv.

This equation can be solved using standard
methods of calculus. For small damping the solution
is of the form

         x  A0 e
 bt

2m sin t    (12.30)

where   k/m  b/2m2   0 
2  b/2m2 .

For small b, the angular frequency
  k/m   0. Thus, the system oscillates with
almost the natural angular frequency k/m  (with
which the system will oscillate if there is no damping)
and with amplitude decreasing with time according to
the equation

              A  A0 e
 

bt
2m.

The amplitude decreases with time and finally
becomes zero. Figure (12.22) shows qualitatively the
displacement of the particle as a function of time.

If the damping is large the system may not
oscillate at all. If displaced, it will go towards the mean
position and stay there without overshooting on the
other side. The damping for which the oscillation just
ceases is called critical damping.

12.13 FORCED OSCILLATION AND RESONANCE

In certain situations apart from the restoring force
and the damping force, there is yet another force
applied on the body which itself changes periodically
with time. As a simplest case suppose a force
F  F0 sint is applied to a body of mass m on which
a restoring force –kx and a damping force bv is acting.
The equation of motion for such a body is

        m 
dv
dt

   kx  bv  F0 sint.

The motion is somewhat complicated for some time
and after this the body oscillates with the frequency  of
the applied periodic force. The displacement is given by
         x  A sint  .
Such an oscillation is called forced oscillation. The
amplitude of the oscillation is given by

        A  
F0 /m

 2  0
 22  b/m 2

 (12.31)

where 0  k/m is the natural angular frequency.

In forced oscillation the energy lost due to the
damping force is compensated by the work done by the
applied force. The oscillations with constant amplitude
are, therefore, sustained.

If we vary the angular frequency  of the applied
force, this amplitude changes and becomes maximum

when     0
 2  b 2/2m2 . This condition is called

resonance. For small damping   0 and the
resonance occurs when the applied frequency is
(almost) equal to the natural frequency.

Figure (12.23) shows the amplitude as a function
of the applied frequency. We see that the amplitude is
large if the damping is small. Also the resonance is
sharp in this case, that is the amplitude rapidly falls
if  is different from 0 .
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If the damping were ideally zero, the amplitude of
the forced vibration at resonance would be infinity by
equation (12.31). Some damping is always present in
mechanical systems and the amplitude remains finite.

However, the amplitude may become very large if
the damping is small and the applied frequency is close
to the natural frequency. This effect is important in
designing bridges and other civil constructions. On

July 1, 1940, the newly constructed Tacoma Narrows
Bridge (Washington) was opened for traffic. Only four
months after this, a mild wind set up the bridge in
resonant vibrations. In a few hours the amplitude
became so large that the bridge could not stand the
stress and a part broke off and went into the water
below.

Worked Out Examples

 1. The equation of a particle executing simple harmonic

motion is x = (5 m) sin






(π s − 1)t + 

π
3







 . Write down the

amplitude, time period and maximum speed. Also find
the velocity at t = 1 s.

Solution : Comparing with equation x = A sin(ωt + δ), we
see that
the amplitude = 5 m,

and time period = 
2π
ω

 = 
2π

π s − 1 = 2 s.

The maximum speed = Aω = 5 m × π  s − 1 = 5π m s−1.

The velocity at time t = 
dx
dt

 = Aω cos(ωt + δ) .

At   t = 1 s,

v = (5 m) (π s − 1) cos



π + 

π
3



 = − 

5π
2

 m s−1.

 2. A block of mass 5 kg executes simple harmonic motion
under the restoring force of a spring. The amplitude and
the time period of the motion are 0.1 m and 3.14 s
respectively. Find the maximum force exerted by the
spring on the block.

Solution : The maximum force exerted on the block is kA
when the block is at the extreme position.

The angular frequency ω = 
2π
T

 = 2 s − 1.

The spring constant = k = mω 2

= (5 kg) (4 s− 2) = 20 N m−1.

Maximum force = kA = (20 N m−1) (0.1 m) = 2 N.

 3. A particle executing simple harmonic motion has angular
frequency 6.28 s – 1 and amplitude 10  cm. Find (a) the
time period, (b) the maximum speed, (c) the maximum
acceleration, (d) the speed when the displacement is 6 cm
from the mean position, (e) the speed at t = 1/6 s
assuming that the motion starts from rest at t = 0.

Solution :

(a) Time period = 
2π
ω

 = 
2π

6.28
 s = 1 s.

(b) Maximum speed = Aω = (0.1 m) (6.28 s − 1)

= 0.628 m s−1.

(c) Maximum acceleration = Aω 2

             = (0.1 m) (6.28 s − 1) 2

             = 4 m s −2.

(d) v = ω √A 2 − x 2  = (6.28 s − 1) √(10 cm) 2 − (6 cm) 2

            = 50.2 cm s−1.

(e) At t = 0, the velocity is zero, i.e., the particle is at an
extreme. The equation for displacement may be written
as 

          x = A cosωt.

The velocity is v = − A ω sin ωt.

At t = 1
6
 s,  v = − (0.1 m) (6.28 s − 1) sin



6.28
6





= (− 0.628 m s−1) sin 
π
3

= − 54.4 cm s−1.

 4. A particle executes a simple harmonic motion of time
period T. Find the time taken by the particle to go directly
from its mean position to half the amplitude.

Solution : Let the equation of motion be x = A sinωt.

At t = 0,  x = 0 and hence the particle is at its mean
position. Its velocity is 

        v = A ω cosωt = A ω

which is positive. So it is going towards x = A/2.

The particle will be at x = A/2, at a time t, where

         
A
2

 = A sinωt

or, sinωt = 1/2

or, ω t = π/6.

Here minimum positive value of ωt is chosen because
we are interested in finding the time taken by the
particle to directly go from x = 0  to  x = A/2.

Thus, t = 
π

6 ω
 = 

π
6(2π/T)

 = 
T
12

 ⋅
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 5. A block of mass m hangs from a vertical spring of spring
constant k. If it is displaced from its equilibrium position,
find the time period of oscillations.

Solution : Suppose the length of the spring is stretched by
a length ∆l. The tension in the spring is k ∆l and this
is the force by the spring on the block. The other force
on the block is mg due to gravity. For equilibrium,
mg = k ∆l  or  ∆l = mg/k. Take this position of the block
as x = 0. If the block is further displaced by x, the

resultant force is k 



mg
k

 + x



 − mg = kx.

Thus, the resultant force is proportional to the
displacement. The motion is simple harmonic with a

time period T = 2π √m
k

⋅

We see that in vertical oscillations, gravity has no effect
on time period. The only effect it has is to shift the
equilibrium position by a distance mg/k as if the natural
length is increased (or decreased if the lower end of the
spring is fixed) by mg/k.

 6. A particle suspended from a vertical spring oscillates
10 times per second. At the highest point of oscillation
the spring becomes unstretched. (a) Find the maximum
speed of the block. (b) Find the speed when the spring is
stretched by 0.20 cm. Take g = π 2 m s −2.

Solution :

(a) The mean position of the particle during vertical
oscillations is mg/k distance away from its position when
the spring is unstretched. At the highest point, i.e., at
an extreme position, the spring is unstretched.

Hence the amplitude is

           A = 
mg
k

 ⋅ … (i)

The angular frequency is

         ω = √ k
m

 = 2πν = (20π) s− 1 … (ii)

   or, 
m
k

 = 
1

400 π 2
 s 2.

Putting in (i), the amplitude is 

      A = 


1
400 π 2 s 2



 

π 2 

m
s 2





= 
1

400
 m = 0.25 cm.

The maximum speed = A ω

= (0.25 cm) (20 π s − 1) = 5 π cm s−1.

(b) When the spring is stretched by 0.20 cm, the block
is 0.25 cm – 0.20 cm = 0.05 cm above the mean position.
The speed at this position will be

v = ω √A 2 − x 2

= (20 π s − 1) √(0.25 cm) 2 − (0.05 cm) 2

≅ 15.4 cm s−1.

 7. The pulley shown in figure (12-W3) has a moment of
inertia I about its axis and mass m. Find the time period
of vertical oscillation of its centre of mass. The spring
has spring constant k and the string does not slip over
the pulley.

Solution : Let us first find the equilibrium position. For
rotational equilibrium of the pulley, the tensions in the
two strings should be equal. Only then the torque on
the pulley will be zero. Let this tension be T. The
extension of the spring will be y = T/k, as the tension
in the spring will be the same as the tension in the
string. For translational equilibrium of the pulley,

     2 T = mg  or,  2 ky = mg    or,    y = 
mg
2 k

 ⋅

The spring is extended by a distance mg
2 k

 when the pulley

is in equilibrium.

Now suppose, the centre of the pulley goes down further
by a distance x. The total increase in the length of the
string plus the spring is 2x (x on the left of the pulley
and x on the right). As the string has a constant length,
the extension of the spring is 2x. The energy of the
system is

U = 
1
2

 Iω 2 + 
1
2

 mv 2 − mgx + 
1
2

 k 


mg
2 k

 + 2 x



 2
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       = 
1
2





I
r 2 + m



 v 2 + 

m 2g 2

8 k
 + 2 kx 2.

As the system is conservative, dU
dt

 = 0,

giving  0 = 


I
r 2 + m



 v 

dv
dt

 + 4 kxv

or,
dv
dt

 = − 
4 kx





I
r 

2 + m



 

or, a = − ω 2x,  where  ω 2 = 
4 k





I
r 

2 + m



 ⋅

Thus, the centre of mass of the pulley executes a simple
harmonic motion with time period

T = 2π √



I
r 2 + m



 /(4 k) .

 8. The friction coefficient between the two blocks shown in
figure (12-W4) is µ and the horizontal plane is smooth.
(a) If the system is slightly displaced and released, find
the time period. (b) Find the magnitude of the frictional
force between the blocks when the displacement from the
mean position is x. (c) What can be the maximum
amplitude if the upper block does not slip relative to the
lower block ?

Solution :

(a) For small amplitude, the two blocks oscillate
together. The angular frequency is

          ω = √k
M + m

and so the time period T = 2π √M + m
k

 ⋅

(b) The acceleration of the blocks at displacement x from
the mean position is

         a = − ω 2x = 
− kx

M + m
 ⋅

The resultant force on the upper block is, therefore,

ma = 
− mkx
M + m

 ⋅

This force is provided by the friction of the lower block.
Hence, the magnitude of the frictional force is
mk | x |
M + m

 ⋅

(c) Maximum force of friction required for simple

harmonic motion of the upper block is m k A
M + m

 at the

extreme positions. But the maximum frictional force can
only be µ mg. Hence

     
m k A
M + m

 = µ mg  or,  A = 
µ (M + m) g

k
 ⋅

 9. The left block in figure (12-W5) collides inelastically with
the right block and sticks to it. Find the amplitude of
the resulting simple harmonic motion.

Solution : Assuming the collision to last for a small
interval only, we can apply the principle of conservation
of momentum. The common velocity after the collision

is v
2
 ⋅ The kinetic energy = 1

2
 (2m) 



v
2





 2

 = 1
4
 mv 2. This is

also the total energy of vibration as the spring is
unstretched at this moment. If the amplitude is A, the

total energy can also be written as 1
2
 kA 2. Thus

       
1
2

 kA 2 = 
1
4

 mv 2,  giving A = √m
2 k

 v.

10. Describe the motion of the mass m shown in figure
(12-W6). The walls and the block are elastic.

Solution : The block reaches the spring with a speed v. It
now compresses the spring. The block is decelerated due

to the spring force, comes to rest when 1
2
 mv 2 = 1

2
 kx 2

and returns back. It is accelerated due to the spring force
till the spring acquires its natural length. The contact
of the block with the spring  is now broken. At this
instant it has regained its speed v (towards left) as the
spring is unstretched and no potential energy is stored.
This process takes half the period of oscillation, i.e.,
π √m/k . The block strikes the left wall after a time L/v
and as the collision is elastic, it rebounds with the same
speed v. After a time L/v, it again reaches the spring
and the process is repeated. The block thus undergoes

periodic motion with time period π √m/k  + 2 L
v

 ⋅

11. A block of mass m is suspended from the ceiling of a
stationary standing elevator through a spring of spring
constant k. Suddenly, the cable breaks and the elevator
starts falling freely. Show that the block now executes a

� �

�
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simple harmonic motion of amplitude mg/k in the
elevator.

Solution : When the elevator is stationary, the spring is
stretched to support the block. If the extension is x, the
tension is kx which should balance the weight of
the block.

Thus, x = mg/k. As the cable breaks, the elevator starts
falling with acceleration ‘g’. We shall work in the frame
of reference of the elevator. Then we have to use a
pseudo force mg upward on the block. This force will
‘balance’ the weight. Thus, the block is subjected to a
net force kx by the spring when it is at a distance x from
the position of unstretched spring. Hence, its motion in
the elevator is simple harmonic with its mean position
corresponding to the unstretched spring. Initially, the
spring is stretched by x = mg/k, where the velocity of
the block (with respect to the elevator) is zero. Thus, the
amplitude of the resulting simple harmonic motion is
mg/k.

12. The spring shown in figure (12-W8) is kept in a stretched
position with extension x0 when the system is released.
Assuming the horizontal surface to be frictionless, find
the frequency of oscillation.

Solution : Considering “the two blocks plus the spring” as
a system, there is no external resultant force on the
system. Hence the centre of mass of the system will
remain at rest. The mean positions of the two simple
harmonic motions occur when the spring becomes
unstretched. If the mass m moves towards right through
a distance x and the mass M moves towards left through
a distance X before the spring acquires natural length,

               x + X = x0. … (i)

x and X will be the amplitudes of the two blocks m and
M respectively. As the centre of mass should not change
during the motion, we should also have

              mx = MX. … (ii)

From (i) and (ii), x = 
Mx0

M + m
  and  X = 

mx0

M + m
 ⋅

Hence, the left block is x = 
Mx0

M + m
 distance away from its

mean position in the beginning of the motion. The force
by the spring on this block at this instant is equal to
the tension of spring, i.e., T = kx0.

Now  x = 
Mx0

M + m
  or,  x0 = 

M + m
M

 x

Thus, T = 
k(M + m)

M
 x  or,  a = 

T
m

 = 
k(M + m)

Mm
 x.

The angular frequency is, therefore, ω = √k(M + m)
Mm

and the frequency is ν = 
ω
2π

 = 
1
2π

 √k(M + m)
Mm

 ⋅

13. Assume that a narrow tunnel is dug between two
diametrically opposite points of the earth. Treat the earth
as a solid sphere of uniform density. Show that if a
particle is released in this tunnel, it will execute a simple
harmonic motion. Calculate the time period of this
motion.

Solution :

Consider the situation shown in figure (12-W9). Suppose
at an instant t the particle in the tunnel is at a distance
x from the centre of the earth. Let us draw a sphere of
radius x with its centre at the centre of the earth. Only
the part of the earth within this sphere will exert a net
attraction on the particle. Mass of this part is

       M′ = 

4
3

 π x 3

4
3

 π R 3
 M = 

x 3

R 3 M.

The force of attraction is, therefore,

       F = 
G(x 3/R 3) Mm

x 2  = 
GMm

R 3  x.

This force acts towards the centre of the earth. Thus,
the resultant force on the particle is opposite to the
displacement from the centre of the earth and is
proportional to it. The particle, therefore, executes a
simple harmonic motion in the tunnel with the centre
of the earth as the mean position.

The force constant is k = GMm

R 
3

 , so that the time period is

       T = 2π √m
k

 = 2π √R 3

GM
⋅
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14. A simple pendulum of length 40 cm oscillates with an
angular amplitude of 0.04 rad. Find (a) the time period,
(b) the linear amplitude of the bob, (c) the speed of the
bob when the string makes 0.02 rad with the vertical and
(d) the angular acceleration when the bob is in
momentary rest. Take g  10 m s2.

Solution :

(a) The angular frequency is

         g/l   10 m s2

0.4 m
  5 s  1.

The time period is 

       
2 


  
2 

5 s  1  1.26 s.

(b) Linear amplitude  40 cm  0.04  1.6 cm.

(c) Angular speed at displacement 0.02 rad is

      5 s  1 0.04 2  0.02 2  rad  0.17 rad s1.

Linear speed of the bob at this instant

      40 cm  0.17 s  1  6.8 cm s1.

(d) At momentary rest, the bob is in extreme position.
Thus, the angular acceleration

  0.04 rad 25 s  2  1 rad s 2.

15. A simple pendulum having a bob of mass m undergoes
small oscillations with amplitude 0 . Find the tension in
the string as a function of the angle made by the string
with the vertical. When is this tension maximum, and
when is it minimum ?

Solution : Suppose the speed of the bob at angle  is v.
Using conservation of energy between the extreme
position and the position with angle ,

            
1
2

 mv 2  mgl cos  cos0.  (i)

As the bob moves in a circular path, the force towards
the centre should be equal to mv 2/l. Thus,

         T  mg cos  mv2/l.

Using (i),

         T  mg cos  2 mg cos  cos0

or,        T  3 mg cos  2 mg cos0 .

Now cos is maximum at   0 and decreases as   
increases (for     90).

Thus, the tension is maximum when   0, i.e., at the
mean position and is minimum when    0 , i.e., at
extreme positions.

16. A simple pendulum is taken at a place where its
separation from the earth’s surface is equal to the radius
of the earth. Calculate the time period of small
oscillations if the length of the string is 1.0 m. Take
g   2 m s2 at the surface of the earth.

Solution : At a height R (radius of the earth) the
acceleration due to gravity is

           g  
GM

R  R 2
  

1
4

  
GM
R 2   g/4.

The time period of small oscillations of the simple
pendulum is

   T  2 l/g   2 1.0 m
1
4

   2 m s2
  2 



2


 s

  4 s.

17. A simple pendulum is suspended from the ceiling of a
car accelerating uniformly on a horizontal road. If the
acceleration is a0 and the length of the pendulum is l,
find the time period of small oscillations about the mean
position.

Solution : We shall work in the car frame. As it is
accelerated with respect to the road, we shall have to
apply a pseudo force ma0 on the bob of mass m.

For mean position, the acceleration of the bob with
respect to the car should be zero. If  be the angle made
by the string with the vertical, the tension, weight and
the pseudo force will add to zero in this position.

Suppose, at some instant during oscillation, the string
is further deflected by an angle  so that the
displacement of the bob is x. Taking the components
perpendicular to the string,
component of T  0,
component of mg  mg sin   and
component of ma0   ma0 cos  .
Thus, the resultant component F

     m[g sin    a0 cos  ].

Expanding the sine and cosine and putting cos  1,
sin    x/l, we get

     F  m 

g sin  a0 cos  g cos  a0 sin x

l



 .  (i)

�
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�
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At x = 0, the force F on the bob should be zero, as this
is the mean position. Thus by (i),

               0 = m[g sinθ − a0 cosθ] … (ii)

   giving       tanθ = 
a0

g

   Thus,     sinθ = 
a0

√a0
 2 + g 2

 … (iii)

            cosθ = 
g

√a0
 2 + g 2

 ⋅ … (iv)

Putting (ii), (iii) and (iv) in (i), F = m √g 2 + a0
 2   

x
l

or,       F = m ω 2x,  where  ω 2 = 
√g 2 + a0

 2

l
 ⋅

This is an equation of simple harmonic motion with time
period

          t = 
2π
ω

 = 2π 
√l


g 2 + a0

 2


1/4
 ⋅

An easy working rule may be found out as follows. In
the mean position, the tension, the weight and the
pseudo force balance.

From figure (12-W12), the tension is

       T = √(ma0) 
2 + (mg) 2

or,         
T
m

 = √a0
 2 + g 2 ⋅

               

This plays the role of effective ‘g’. Thus the time period is

     t = 2π √l
T/m

 = 2π 
√l

[g 2 + a0
 2] 1/4 ⋅

18. A uniform meter stick is suspended through a small pin
hole at the 10 cm mark. Find the time period of small
oscillation about the point of suspension.

Solution : Let the mass of the stick be m. The moment of
inertia of the stick about the axis of rotation through
the point of suspension is

             I = 
ml 2

12
 + md 2,

where l = 1 m and d = 40 cm.

The separation between the centre of mass of the stick
and the point of suspension is d = 40 cm. The time period
of this physical pendulum is

        T = 2 π √I
mgd

         = 2π √



ml 2

12
 + md 2 




/(mgd)

    = 2π 









√



1
12

 + 0.16


/4










 s = 1.55 s.

19. The moment of inertia of the disc used in a torsional
pendulum about the suspension wire is 0.2 kg-m 2.  It
oscillates with a period of 2 s. Another disc is placed over
the first one and the time period of the system becomes
2.5 s. Find the moment of inertia of the second disc about
the wire.

Solution :

Let the torsional constant of the wire be k. The moment

of inertia of the first disc about the wire is 0.2 kg–m2.
Hence, the time period is

     2 s = 2π √ I
K

           = 2π√0.2 kg–m 2

k
 ⋅ … (i)

When the second disc having moment of inertia I1 about
the wire is added, the time period is

          2.5 s = 2π √0.2 kg–m 2 + I1

k
… (ii)

From (i) and (ii), 
6.25

4
 = 

0.2 kg–m 2 + I1

0.2 kg–m 2
 ⋅

This gives I1 ≈ 0.11 kg-m 2.

20. A uniform rod of mass m and length l is suspended
through a light wire of length l and torsional constant k
as shown in figure (12-W15). Find the time period if the
system makes (a) small oscillations in the vertical plane
about the suspension point and (b) angular oscillations
in the horizontal plane about the centre of the rod.
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 Solution :

(a) The oscillations take place about the horizontal line
through the point of suspension and perpendicular to
the plane of the figure. The moment of inertia of the rod
about this line is

        
ml 2

12
 + ml 2 = 

13
12

 ml 2.

The time period = 2π √⎯⎯I
mgl

 = 2π√⎯⎯⎯13 ml 2

12 mgl

           = 2π √⎯⎯13 l
12 g

 ⋅

(b) The angular oscillations take place about the
suspension wire. The moment of inertia about this line
is ml 2/12. The time period is

        2π √⎯ I
k

 = 2π √⎯⎯ml 2

12 k
⋅

21. A particle is subjected to two simple harmonic motions
         x1 = A1 sinωt
and       x2 = A2 sin(ωt + π/3).
Find (a) the displacement at t = 0, (b) the maximum speed
of the particle and (c) the maximum acceleration of the
particle.

Solution :
(a) At t = 0,   x1 = A1 sinωt = 0

and x2 = A2 sin(ωt + π/3)

= A2 sin (π/3) = 
A2 √3

2
 ⋅

Thus, the resultant displacement at t = 0 is

       x = x1 + x2 = 
A2 √3

2
 ⋅           

(b) The resultant of the two motions is a simple
harmonic motion of the same angular frequency ω. The
amplitude of the resultant motion is

      A = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯A1
 2 + A2

 2 + 2 A1 A2 cos(π/3)

= √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯A1
 2 + A2

 2 + A1 A2 .

The maximum speed is

        vmax = A ω = ω √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯A1
 2 + A2

 2 + A1 A2 .

(c) The maximum acceleration is 

amax = A ω 2 = ω 2 √⎯⎯⎯⎯⎯⎯⎯⎯⎯A1
2 + A2

2 + A1A2 .

22. A particle is subjected to two simple harmonic motions
in the same direction having equal amplitudes and equal
frequency. If the resultant amplitude is equal to the
amplitude of the individual motions, find the phase
difference between the individual motions.

Solution : Let the amplitudes of the individual motions be
A each. The resultant amplitude is also A. If the phase
difference between the two motions is δ,

         A = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯A 2 + A 2 + 2A . A . cosδ

or, = A √⎯⎯⎯⎯⎯⎯⎯⎯⎯2(1 + cosδ)  = 2A cos 
δ
2

or, cos 
δ
2

 = 
1
2

or, δ = 2π/3.

QUESTIONS FOR SHORT ANSWER

 1. A person goes to bed at sharp 10.00 pm every day. Is it
an example of periodic motion ? If yes, what is the time
period ? If no, why ?

 2. A particle executing simple harmonic motion comes to
rest at the extreme positions. Is the resultant force on
the particle zero at these positions according to Newton’s
first law ?

 3. Can simple harmonic motion take place in a noninertial
frame? If yes, should the ratio of the force applied with
the displacement be constant ?

 4. A particle executes simple harmonic motion. If you are
told that its velocity at this instant is zero, can you say
what is its displacement ? If you are told that its velocity

at this instant is maximum, can you say what is its
displacement ?

 5. A small creature moves with constant speed in a vertical
circle on a bright day. Does its shadow formed by the
sun on a horizontal plane move in a simple harmonic
motion ?

 6. A particle executes simple harmonic motion. Let P be a
point near the mean position and Q be a point near an
extreme. The speed of the particle at P is larger than
the speed at Q. Still the particle crosses P and Q equal
number of times in a given time interval. Does it make
you unhappy ?

k

m

Figure 12-W15
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 7. In measuring time period of a pendulum, it is advised
to measure the time between consecutive passage
through the mean position in the same direction. This
is said to result in better accuracy than measuring time
between consecutive passage through an extreme
position. Explain.

 8. It is proposed to move a particle in simple harmonic
motion on a rough horizontal surface by applying an
external force along the line of motion. Sketch the graph
of the applied force against the position of the particle.
Note that the applied force has two values for a given
position depending on whether the particle is moving in
positive  or negative direction.

 9. Can the potential energy in a simple harmonic motion
be negative ? Will it be so if we choose zero potential
energy at some point other than the mean position ?

10. The energy of a system in simple harmonic motion is

given by E = 1
2
 m ω 2A 2. Which of the following two

statements is more appropriate ?
(A) The energy is increased because the amplitude is
increased.

   (B) The amplitude is increased because the energy is
increased.

11. A pendulum clock gives correct time at the equator. Will
it gain time or loose time as it is taken to the poles ?

12. Can a pendulum clock be used in an earth-satellite ?

13. A hollow sphere filled with water is used as the bob of
a pendulum. Assume that the equation for simple
pendulum is valid with the distance between the point
of suspension and centre of mass of the bob acting as
the effective length of the pendulum. If water slowly
leaks out of the bob, how will the time period vary ?

14. A block of known mass is suspended from a fixed support
through a light spring. Can you find the time period of
vertical oscillation only by measuring the extension of
the spring when the block is in equilibrium ?

15. A platoon of soldiers marches on a road in steps
according to the sound of a marching band. The band is
stopped and the soldiers are ordered to break the steps
while crossing a bridge. Why ?

16. The force acting on a particle moving along X-axis is
F = − k(x − v0 t) where k is a positive constant. An
observer moving at a constant velocity v0 along the
X-axis looks at the particle. What kind of motion does
he find for the particle ?

OBJECTIVE I

 1. A student says that he had applied a force F = − k√x on
a particle and the particle moved in simple harmonic
motion. He refuses to tell whether k is a constant or not.
Assume that he has worked only with positive x and no
other force acted on the particle.
(a) As x increases k increases.
(b) As x increases k decreases.
(c) As x increases k remains constant.
(d) The motion cannot be simple harmonic.

 2. The time period of a particle in simple harmonic motion
is equal to the time between consecutive appearances of
the particle at a particular point in its motion. This point
is
(a) the mean position       (b) an extreme position
(c) between the mean position and the positive extreme
(d) between the mean position and the negative
extreme.

 3. The time period of a particle in simple harmonic motion
is equal to the smallest time between the particle
acquiring a particular velocity v

→
. The value of v is

(a) vmax              (b) 0
(c) between 0 and vmax    (d) between 0 and −vmax.

 4. The displacement of a particle in simple harmonic
motion in one time period is
(a) A     (b) 2A     (c) 4A     (d) zero.

 5. The distance moved by a particle in simple harmonic
motion in one time period is
(a) A     (b) 2A       (c) 4A     (d) zero.

 6. The average acceleration in one time period in a simple
harmonic motion is
(a) A ω 2   (b) A ω 2/2   (c) A ω 2/√2    (d) zero.

 7. The motion of a particle is given by
x = A sinωt + B cosωt. The motion of the particle is
(a) not simple harmonic
(b) simple harmonic with amplitude A + B
(c) simple harmonic with amplitude (A + B) / 2

(d) simple harmonic with amplitude  √A 2 + B 2 .

 8. The displacement of a particle is given by
r
→
 = A(i

→
 cosωt + j

→
 sinωt). The motion of the particle is

(a) simple harmonic    (b) on a straight line
(c) on a circle       (d) with constant acceleration.

 9. A particle moves on the X-axis according to the equation
x = A + B sinωt. The motion is simple harmonic with
amplitude

(a) A    (b) B    (c) A + B    (d) √A 2 + B 2 .

10. Figure (12-Q1) represents two simple harmonic motions.

   

�
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The parameter which has different values in the two
motions is
(a) amplitude            (b) frequency
(c) phase               (d) maximum velocity.

11. The total mechanical energy of a spring-mass system in

simple harmonic motion is E = 1
2
 m ω 2A 2. Suppose the

oscillating particle is replaced by another particle of
double the mass while the amplitude A remains the
same. The new mechanical energy will
(a) become 2E           (b) become E/2
(c) become √2E           (d) remain E.

12. The average energy in one time period in simple
harmonic motion is

(a) 
1
2

 m ω 2 A 2            (b) 
1
4

 m ω 2 A 2 

(c) m ω 2 A 2             (d) zero.

13. A particle executes simple harmonic motion with a
frequency ν. The frequency with which the kinetic
energy oscillates is
(a) ν/2     (b) ν      (c) 2 ν     (d) zero.

14. A particle executes simple harmonic motion under the
restoring force provided by a spring. The time period is
T. If the spring is divided in two equal parts and one
part is used to continue the simple harmonic motion, the
time period will
(a) remain T          (b) become 2T
(c) become T/2         (d) become T/√2.

15. Two bodies A and B of equal mass are suspended from
two separate massless springs of spring constant k1 and
k2 respectively. If the bodies oscillate vertically such that
their maximum velocities are equal, the ratio of the
amplitude of A to that of B is
(a) k1 /k2             (b) √k1 /k2

(c) k2 /k1              (d) √k2 /k1 .    

16. A spring-mass system oscillates with a frequency ν. If
it is taken in an elevator slowly accelerating upward,
the frequency will
(a) increase           (b) decrease
(c) remain same        (d) become zero.

17. A spring-mass system oscillates in a car. If the car
accelerates on a horizontal road, the frequency of
oscillation will
(a) increase           (b) decrease
(c) remain same        (d) become zero.

18. A pendulum clock that keeps correct time on the earth
is taken to the moon. It will run
(a) at correct rate        (b) 6 times faster
(c) √6 times faster      (d) √6 times slower.

19. A wall clock uses a vertical spring-mass system to
measure the time. Each time the mass reaches an
extreme position, the clock advances by a second. The
clock gives correct time at the equator. If the clock is
taken to the poles it will
(a) run slow           (b) run fast
(c) stop working         (d) give correct time.

20. A pendulum clock keeping correct time is taken to high
altitudes,
(a) it will keep correct time
(b) its length should be increased to keep correct time
(c) its length should be decreased to keep correct time
(d) it cannot keep correct time even if the length is
changed.

21. The free end of a simple pendulum is attached to the
ceiling of a box. The box is taken to a height and the
pendulum is oscillated. When the bob is at its lowest
point, the box is released to fall freely. As seen from the
box during this period, the bob will
(a) continue its oscillation as before
(b) stop 
(c) will go in a circular path
(d) move on a straight line.

OBJECTIVE II

 1 Select the correct statements.
(a) A simple harmonic motion is necessarily periodic.
(b) A simple harmonic motion is necessarily oscillatory.
(c) An oscillatory motion is necessarily periodic.
(d) A periodic motion is necessarily oscillatory.

 2. A particle moves in a circular path with a uniform speed.
Its motion is
(a) periodic         (b) oscillatory
(c) simple harmonic     (d) angular simple harmonic.

 3. A particle is fastened at the end of a string and is
whirled in a vertical circle with the other end of the
string being fixed. The motion of the particle is
(a) periodic          (b) oscillatory
(c) simple harmonic   (d) angular simple harmonic.

 4. A particle moves in a circular path with a continuously
increasing speed. Its motion is

(a) periodic          (b) oscillatory
(c) simple harmonic    (d) none of them.

 5. The motion of a torsional pendulum is
(a) periodic          (b) oscillatory
(c) simple harmonic    (d) angular simple harmonic.

 6. Which of the following quantities are always negative in
a simple harmonic motion ?

(a) F
→

 . a
→

.     (b) v
→
 . r

→
.     (c) a

→
 . r

→
.     (d) F

→
 . r

→
.

 7. Which of the following quantities are always positive in
a simple harmonic motion ?

(a) F
→

 . a
→

.     (b) v
→
 . r

→
.     (c) a

→
 . r

→
.     (d) F

→
 . r

→
.

 8. Which of the following quantities are always zero in a
simple harmonic motion ?

(a) F
→

 × a
→

.     (b) v
→
 × r

→
.     (c) a

→
 × r

→
.      (d) F

→
 × r

→
.

 9. Suppose a tunnel is dug along a diameter of the earth.
A particle is dropped from a point, a distance h directly
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above the tunnel. The motion of the particle as seen from
the earth is
(a) simple harmonic           (b) parabolic
(c) on a straight line           (d) periodic.

10. For a particle executing simple harmonic motion, the
acceleration is proportional to
(a) displacement from the mean position
(b) distance from the mean position
(c) distance travelled since t = 0
(d) speed.

11. A particle moves in the X-Y plane according to the
equation
           r

→
 = (i

→
 + 2 j

→
 ) A cosωt.

The motion of the particle is
(a) on a straight line     (b) on an ellipse
(c) periodic           (d) simple harmonic.

12. A particle moves on the X-axis according to the equation
x = x0 sin 2 ωt. The motion is simple harmonic
(a) with amplitude x0     (b) with amplitude 2x0

(c) with time period 
2π
ω

   (d) with time period 
π
ω

 ⋅

13. In a simple harmonic motion
(a) the potential energy is always equal to the kinetic
energy
(b) the potential energy is never equal to the kinetic
energy

(c) the average potential energy in any time interval is
equal to the average kinetic energy in that time interval
(d) the average potential energy in one time period is
equal to the average kinetic energy in this period.

14. In a simple harmonic motion
(a) the maximum potential energy equals the maximum
kinetic energy
(b) the minimum potential energy equals the minimum
kinetic energy
(c) the minimum potential energy equals the maximum
kinetic energy
(d) the maximum potential energy equals the minimum
kinetic energy.

15. An object is released from rest. The time it takes to fall
through a distance h and the speed of the object as it
falls through this distance are measured with a
pendulum clock. The entire apparatus is taken on the
moon and the experiment is repeated
(a) the measured times are same
(b) the measured speeds are same
(c) the actual times in the fall are equal
(d) the actual speeds are equal.

16. Which of the following will change the time period as
they are taken to moon ?
(a) A simple pendulum    (b) A physical pendulum
(c) A torsional pendulum    (d) A spring-mass system

EXERCISES

 1. A particle executes simple harmonic motion with an
amplitude of 10 cm and time period 6 s. At t = 0 it is at
position x = 5 cm going towards positive x-direction.
Write the equation for the displacement x at time t. Find
the magnitude of the acceleration of the particle at
t = 4 s.

 2. The position, velocity and acceleration of a particle
executing simple harmonic motion are found to have
magnitudes 2 cm, 1 m s–1 and 10 m s –2 at a certain
instant. Find the amplitude and the time period of the motion.

 3. A particle executes simple harmonic motion with an
amplitude of 10 cm. At what distance from the mean
position are the kinetic and potential energies equal ?

 4. The maximum speed and acceleration of a particle
executing simple harmonic motion are 10 cm s–1 and
50 cm s –2. Find the position(s) of the particle when the
speed is 8 cm s–1.

 5. A particle having mass 10 g oscillates according to the
equation x = (2.0 cm) sin[(100 s − 1)t + π/6]. Find (a) the
amplitude, the time period and the spring constant
(b) the position, the velocity and the acceleration at t = 0.

 6. The equation of motion of a particle started at t = 0 is
given by x = 5 sin (20 t + π/3), where x is in centimetre
and t in second. When does the particle
(a) first come to rest

(b) first have zero acceleration
(c) first have maximum speed ?

 7. Consider a particle moving in simple harmonic motion
according to the equation

          x = 2.0 cos(50 π t + tan − 1 0.75)
where x is in centimetre and t in second. The motion is
started at t = 0. (a) When does the particle come to rest
for the first time ? (b) When does the acceleration have
its maximum magnitude for the first time ? (c) When
does the particle come to rest for the second time ?

 8. Consider a simple harmonic motion of time period T.
Calculate the time taken for the displacement to change
value from half the amplitude to the amplitude.

 9. The pendulum of a clock is replaced by a  spring-mass
system with the spring having spring constant

0.1 N m−1. What mass should be attached to the spring ?

10. A block suspended from a vertical spring is in
equilibrium. Show that the extension of the spring
equals the length of an equivalent simple pendulum, i.e.,
a pendulum having frequency same as that of the block.

11. A block of mass 0.5 kg hanging from a vertical spring
executes simple harmonic motion of amplitude 0.1 m and
time period 0.314 s. Find the maximum force exerted by
the spring on the block.

12. A body of mass 2 kg suspended through a vertical spring
executes simple harmonic motion of period 4 s. If the
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oscillations are stopped and the body hangs in
equilibrium, find the potential energy stored in the
spring.

13. A spring stores 5 J of energy when stretched by 25 cm.
It is kept vertical with the lower end fixed. A block
fastened to its other end is made to undergo small
oscillations. If the block makes 5 oscillations each
second, what is the mass of the block ?

14. A small block of mass m is kept on a bigger block of
mass M which is attached to a vertical spring of spring
constant k as shown in the figure. The system oscillates
vertically. (a) Find the resultant force on the smaller
block when it is displaced through a distance x above
its equilibrium position. (b) Find the normal force on the
smaller block at this position. When is this force smallest
in magnitude ? (c) What can be the maximum amplitude
with which the two blocks may oscillate together ?

15. The block of mass m1 shown in figure (12-E2) is fastened
to the spring and the block of mass m2 is placed against
it. (a) Find the compression of the spring in the
equilibrium position. (b) The blocks are pushed a further
distance (2/k) (m1 + m2)g sinθ against the spring and
released. Find the position where the two blocks
separate. (c) What is the common speed of blocks at the
time of separation ?

16. In figure (12-E3) k = 100 N m−1, M = 1 kg and F = 10 N.
(a) Find the compression of the spring in the equilibrium
position. (b) A sharp blow by some external agent
imparts a speed of 2 m s–1 to the block towards left. Find
the sum of the potential energy of the spring and the
kinetic energy of the block at this instant. (c) Find the
time period of the resulting simple harmonic motion.
(d) Find the amplitude. (e) Write the potential energy of
the spring when the block is at the left extreme. (f) Write
the potential energy of the spring when the block is at
the right extreme.
The answers of (b), (e) and (f) are different. Explain why
this does not violate the principle of conservation of
energy.

17. Find the time period of the oscillation of mass m in
figures 12-E4 a, b, c. What is the equivalent spring
constant of the pair of springs in each case ?

18. The spring shown in figure (12-E5) is unstretched when
a man starts pulling on the cord. The mass of the block
is M. If the man exerts a constant force F, find (a) the
amplitude and the time period of the motion of the block,
(b) the energy stored in the spring when the block passes
through the equilibrium position and (c) the kinetic
energy of the block at this position.

19. A particle of mass m is attatched to three springs A, B
and C of equal force constants k as shown in figure
(12-E6). If the particle is pushed slightly against the
spring C and released, find the time period of oscillation.

20. Repeat the previous exercise if the angle between each
pair of springs is 120° initially.

21. The springs shown in the figure (12-E7) are all
unstretched in the beginning when a man starts pulling
the block. The man exerts a constant force F on the
block. Find the amplitude and the frequency of the
motion of the block.

22. Find the elastic potential energy stored in each spring
shown in figure (12-E8), when the block is in
equilibrium. Also find the time period of vertical
oscillation of the block.
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23. The string, the spring and the pulley shown in figure
(12-E9) are light. Find the time period of the mass m.

24. Solve the previous problem if the pulley has a moment of
inertia I about its axis and the string does not slip over it.

25. Consider the situation shown in figure (12-E10). Show
that if the blocks are displaced slightly in opposite
directions and released, they will execute simple
harmonic motion. Calculate the time period.

26. A rectangular plate of sides a and b is suspended from
a ceiling by two parallel strings of length L each (figure
12-E11). The separation between the strings is d. The
plate is displaced slightly in its plane keeping the strings
tight. Show that it will execute simple harmonic motion.
Find the time period.

27. A 1 kg block is executing simple harmonic motion of
amplitude 0.1 m on a smooth horizontal surface under
the restoring force of a spring of spring constant
100 N m–1. A block of mass 3 kg is gently placed on it
at the instant it passes through the mean position.
Assuming that the two blocks move together, find the
frequency and the amplitude of the motion.

28. The left block in figure (12-E13) moves at a speed v
towards the right block placed in equilibrium. All
collisions to take place are elastic and the surfaces are
frictionless. Show that the motions of the two blocks are
periodic. Find the time period of these periodic motions.
Neglect the widths of the blocks.

29. Find the time period of the motion of the particle shown
in figure (12-E14). Neglect the small effect of the bend
near the bottom.

30. All the surfaces shown in figure (12-E15) are frictionless.
The mass of the car is M, that of the block is m and the
spring has spring constant k. Initially, the car and the
block are at rest and the spring is stretched through a
length x0 when the system is released. (a) Find the
amplitudes of the simple harmonic motion of the block
and of the car as seen from the road. (b) Find the time
period(s) of the two simple harmonic motions.

31. A uniform plate of mass M stays horizontally and
symmetrically on two wheels rotating in opposite
directions (figure 12-E16). The separation between the
wheels is L. The friction coefficient between each wheel
and the plate is  Find the time period of oscillation of
the plate if it is slightly displaced along its length and
released.

32. A pendulum having time period equal to two seconds is
called a seconds pendulum. Those used in pendulum
clocks are of this type. Find the length of a seconds
pendulum at a place where g  2 m s –2.

33. The angle made by the string of a simple pendulum with

the vertical depends on time as   

90

 sin[ s  1 t]. Find

the length of the pendulum if g   2 m s –2.

�

�

�

�

�

�

�

Figure 12-E8

�

�

Figure 12-E9

�

�

�

Figure 12-E10

�	�


��




Figure 12-E11

Figure 12-E12

� �



�
�

Figure 12-E13

����

��� ���

Figure 12-E14

�

�

�

Figure 12-E15

Figure 12-E16

254 Concepts of Physics



34. The pendulum of a certain clock has time period 2.04 s.
How fast or slow does the clock run during 24 hours ?

35. A pendulum clock giving correct time at a place where
g = 9.800 m s –2 is taken to another place where it loses
24 seconds during 24 hours. Find the value of g at this
new place.

36. A simple pendulum is constructed by hanging a heavy
ball by a 5.0 m long string. It undergoes small
oscillations. (a) How many oscillations does it make per
second ? (b) What will be the frequency if the system is
taken on the moon where acceleration due to gravitation
of the moon is 1.67 m s –2 ?

37. The maximum tension in the string of an oscillating
pendulum is double of the minimum tension. Find the
angular amplitude.

38. A small block oscillates back and forth on a smooth
concave surface of radius R (figure 12-E17). Find the
time period of small oscillation.

39. A spherical ball of mass m and radius r rolls without
slipping on a rough concave surface of large radius R.
It makes small oscillations about the lowest point. Find
the time period.

40. A simple pendulum of length 40 cm is taken inside a
deep mine. Assume for the time being that the mine is
1600 km deep. Calculate the time period of the
pendulum there. Radius of the earth = 6400 km.

41. Assume that a tunnel is dug across the earth
(radius = R) passing through its centre. Find the time a
particle takes to cover the length of the tunnel if (a) it
is projected into the tunnel with a speed of √gR  (b) it
is released from a height R above the tunnel (c) it is
thrown vertically upward along the length of tunnel with
a speed of √gR .

42. Assume that a tunnel is dug along a chord of the earth,
at a perpendicular distance R/2 from the earth’s centre
where R is the radius of the earth. The wall of the tunnel
is frictionless. (a) Find the gravitational force exerted by
the earth on a particle of mass m placed in the tunnel
at a distance x from the centre of the tunnel. (b) Find
the component of this force along the tunnel and
perpendicular to the tunnel. (c) Find the normal force
exerted by the wall on the particle. (d) Find the resultant
force on the particle. (e) Show that the motion of the
particle in the tunnel is simple harmonic and find the
time period.

43. A simple pendulum of length l is suspended through the
ceiling of an elevator. Find the time period of small
oscillations if the elevator (a) is going up with an
acceleration a0 (b) is going down with an acceleration
a0 and (c) is moving with a uniform velocity.

44. A simple pendulum of length 1 feet suspended from the
ceiling of an elevator takes π/3 seconds to complete one
oscillation. Find the acceleration of the elevator.

45. A simple pendulum fixed in a car has a time period of
4 seconds when the car is moving uniformly on a
horizontal road. When the accelerator is pressed, the
time period changes to 3.99 seconds. Making an
approximate analysis, find the acceleration of the car.

46. A simple pendulum of length l is suspended from the
ceiling of a car moving with a speed v on a circular
horizontal road of radius r. (a) Find the tension in the
string when it is at rest with respect to the car. (b) Find
the time period of small oscillation.

47. The ear-ring of a lady shown in figure (12-E18) has a
3 cm long light suspension wire. (a) Find the time period
of small oscillations if the lady is standing on the ground.
(b) The lady now sits in a merry-go-round moving at
4 m s–1 in a circle of radius 2 m. Find the time period
of small oscillations of the ear-ring.

48. Find the time period of small oscillations of the following
systems. (a) A metre stick suspended through the 20 cm
mark. (b) A ring of mass m and radius r suspended
through a point on its periphery. (c) A uniform square
plate of edge a suspended through a corner. (d) A
uniform disc of mass m and radius r suspended through
a point r/2 away from the centre.

49. A uniform rod of length l is suspended by an end and
is made to undergo small oscillations. Find the length
of the simple pendulum having the time period equal to
that of the rod.

50. A uniform disc of radius r is to be suspended through a
small hole made in the disc. Find the minimum possible
time period of the disc for small oscillations. What
should be the distance of the hole from the centre for it
to have minimum time period ?

51. A hollow sphere of radius 2 cm is attached to an 18 cm
long thread to make a pendulum. Find the time period
of oscillation of this pendulum. How does it differ from
the time period calculated using the formula for a simple
pendulum ?

52. A closed circular wire hung on a nail in a wall undergoes
small oscillations of amplitude 20 and time period 2 s.
Find (a) the radius of the circular wire, (b) the speed of
the particle farthest away from the point of suspension
as it goes through its mean position, (c) the acceleration
of this particle as it goes through its mean position and
(d) the acceleration of this particle when it is at an
extreme position. Take g = π 2 m s −2.

53. A uniform disc of mass m and radius r is suspended
through a wire attached to its centre. If the time period
of the torsional oscillations be T, what is the torsional
constant of the wire?

Figure 12-E17

Figure 12-E18
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54. Two small balls, each of mass m are connected by a light
rigid rod of length L. The system is suspended from its
centre by a thin wire of torsional constant k. The rod is
rotated about the wire through an angle 0 and released.
Find the force exerted by the rod on one of the balls as
the system passes through the mean position.

55. A particle is subjected to two simple harmonic motions
of same time period in the same direction. The
amplitude of the first motion is 3.0 cm and that of the
second is 4.0 cm. Find the resultant amplitude if the

phase difference between the motions is (a) 0, (b) 60,
(c) 90.

56. Three simple harmonic motions of equal amplitudes A
and equal time periods in the same direction combine.
The phase of the second motion is 60 ahead of the first
and the phase of the third motion is 60 ahead of the
second. Find the amplitude of the resultant motion.

57. A particle is subjected to two simple harmonic motions
given by

   x1  2.0 sin100  t  and  x2  2.0 sin120  t  /3,
where x is in centimeter and t in second. Find the
displacement of the particle at (a) t  0.0125,
(b) t  0.025.

58. A particle is subjected to two simple harmonic motions,
one along the X-axis and the other on a line making an
angle of 45 with the X-axis. The two motions are given
by
         x  x0 sint  and  s  s0 sint
Find the amplitude of the resultant motion.

ANSWERS

OBJECTIVE I

 1. (a)  2. (b)  3. (a)  4. (d)  5. (c)  6. (d)
 7. (d)  8. (c)  9. (b) 10. (c) 11. (d) 12. (a)
13. (c) 14. (d) 15. (d) 16. (c) 17. (c) 18. (d)
19. (d) 20. (c) 21. (c).

OBJECTIVE II

 1. (a), (b)  2. (a)  3. (a)
 4. (d)  5. (a), (b), (d)  6. (c), (d)
 7. (a)  8. all  9. (c), (d)
10. (a) 11. (a), (c), (d) 12. (d)
13. (d) 14. (a), (b) 15. (a), (b)
16. (a), (b).

EXERCISES

 1. x  10 cm sin 




2 
6 s

 t  

6



 ,  11 cm s 2

 2. 4.9 cm,  0.28 s
 3. 52 cm

 4.  1.2 cm from the mean position

 5. (a) 2.0 cm,  0.063 s,  100 N m1 

    (b) 1.0 cm,  1.73 m s 1,  100 m s 2

 6. (a) 


120
 s (b) 


30

 s (c) 


30
 s

 7. (a) 1.6  10 – 2 s (b) 1.6  10 – 2 s (c) 3.6  10 – 2 s

 8. T/6

 9.  10 g

11. 25 N

12. 40 J

13. 0.16 kg

14. (a) 
mkx

M  m
 (b) mg  

mkx
M  m

 , at the highest point

   (c) g 
M  m

k

15. (a) 
m1  m2g sin 

k

   (b) When the spring acquires its natural length

   (c) 3
k

 m1  m2  g sin

16. (a) 10 cm (b) 2.5 J (c) /5 s

   (d) 20 cm (e) 4.5 J (f) 0.5 J

17. (a) 2 mk1  k2

 (b) 2 mk1  k2

 (c) 2 mk1  k2
k1k2

18. (a) 
F
k

 , 2  M
k

, (b) 
F 2

2 k
 (c) 

F 2

2 k

19. 2  m
2 k

20. 2  2 m
3 k

��

���

Figure 12-E19
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21. 
Fk2  k3

k1k2  k2k3  k3k1

 ,  
1

2 
 k1k2  k2k3  k3k1

Mk2  k3

22. 
M 2g 2

2 k1
 ,  

M 2g 2

2 k2
  and  

M 2g 2

2 k3
 from above, time period

        2  M 


1
k1

  
1
k2

  
1
k3





23. 2  m
k

24. 2  m  I/r 2
k

25. 2  m
2 k

26. 2  L
g

27. 
5

2 
 Hz, 5 cm

28. 






 m

k
  

2 L
v








29.  0.73 s

30. (a) 
Mx0

M  m
 ,  

mx0

M  m
  (b) 2  mM

kM  m

31. 2  L
2  g

32. 1 m
33. 1 m
34. 28.3 minutes slow

35. 9.795 m s 2

36. (a) 0.70/ (b) 1/2  3 Hz

37. cos – 1 3/4
38. 2 R/g

39. 2  7R  r
5 g

40. 1.47 s

41. 

2

 R
g

 in each case

42. (a) 
GMm

R 3  x 2  R 2/4  (b) 
GMm

R 3  x, 
GMm
2 R 2  

   (c) 
GMm
2 R 2  , (d) 

GMm
R 3  x (e) 2  R 3/GM

43. (a) 2  l
g  a0

   (b) 2  l
g  a0

   (c) 2   l
g

44. 4 f s –2 upwards
45. g/10

46. (a) ma (b) 2  l/a ,  where  a  



g 2  

v 4

r 2





 1/2

47. (a) 0.34 s (b) 0.30 s

48. (a) 1.51 s (b) 2  2 r
g

 (c) 2  8 a
3 g

 (d) 2  3 r
2 g

49. 2l/3

50. 2  r2 
g

 ,  r/2

51. 0.89 s, it is about 0.3% larger than the calculated value
52. (a) 50 cm (b) 11 cm s–1 
   (c) 1.2 cm s–2 towards the point of suspension
   (d) 34 cm s–2 towards the mean position

53. 
2  2mr 2

T 2  

54. 




k 2 0
 4

L2   m 2g 2



 1/2

55. (a) 7.0 cm (b) 6.1 cm (c) 5.0 cm
56. 2 A

57. (a)  2.41 cm (b) 0.27 cm

58. x0
 2  s0

 2  2 x0 s0
 1/2
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